Proceedings of the
International Symposium on
Low Power Electronics
and Design

ISLPED 2013
September 4-6, 2013
Beijing, China

The International Symposium on Low Power Electronics and Design (ISLPED) is the premier forum for presentation of recent advances in all aspects of low-power design and technologies, ranging from process and circuit technologies, to simulation and synthesis tools, to system-level design and optimization. ISLPED is sponsored by IEEE, ACM, IEEE-CAS (Circuits and Systems Society), and ACM-SIGDA (Special Interest Group on Design Automation), with technical support from IEEE-SSCS (Solid-State Circuits Society) and IEEE-EDS (Electron Devices Society).

Copyright and Reprint Permission: Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law for private use of patrons those articles in this volume that carry a code at the bottom of the first page, provided the per-copy fee indicated in the code is paid through Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923. For other copying, reprint or republication permission, write to IEEE Copyrights Manager, IEEE Operations Center, 445 Hoes Lane, Piscataway, NJ 08854. All rights reserved.

Copyright ©2013 by the Institute of Electrical and Electronics Engineers, Inc.

IEEE Catalog Number: CFPLOW-CDR
ISBN: 978-1-4799-1234-6 (USB Thumb Drive)

The PROCEEDINGS from past ISLPED Symposia are available from the IEEE. For publication ordering information, please visit:

Individual papers: www.ieee.org/services/askieee Special rates for IEEE members.

Full printed Proceedings: www.proceedings.com

The papers are available on the IEEE's IEL/XPLORE on-line system. Choose to browse by conference and enter “ISLPED” to access the full Tables of Contents, abstracts, and PDF files. Any researcher can use full-text search across the 3 million papers in the XPLORE database to access the abstracts of previous ISLPED papers and others related to your inquiry. Subscribers may download the PDFs of any ISLPED papers. Non-subscribers may purchase single copies at a reasonable fee. To access this resource, please visit:

ieeexplore.ieee.org
2013 International Symposium on Low Power Electronics and Design (ISLPED)

Table of Contents

Keynote Session

Energy Efficient Computing: From Milliwatt to Megawatt 1
Feng Zhao, Microsoft Research

Holistic Approach to Low-Power System Design 2
Cheng-Wen Wu, ITRI and NTHU

SESSION 1A Design and Optimization of Interconnects

Chair: Abbes Amira, Qatar University

Compiler Assisted Dynamic Register File in GPGPU 3
Naifeng Jing, Haopeng Liu, Yao Lu, Xiaoyao Liang, Shanghai Jiao Tong University

An Energy Efficient GPGPU Memory Hierarchy With Tiny Incoherent Caches 9
Alamelu Sankaranarayanan1, Ehsan K Ardestani1, José Luis Briz Velasco2, Jose Renau1
1University of California, Santa Cruz, 2University of Zaragoza

Design and Analysis of 3D IC-Based Low Power Stereo Matching Processors 15
Seung-Ho Ok1, Kyeong-ryeol Bae1, Sung Kyu Lim2, Byungjin Moon1
1Kyungpook National University, 2Georgia Institute of Technology

Design and Analysis of Ultra Low Power Processors Using Sub/Near-Threshold 3D Stacked ICs 21
Sandeep Kumar Samal, Yarui Peng, Yang Zhang, Sung Kyu Lim, Georgia Institute of Technology

SESSION 1B Low Power Design Automation

Automated Checkpointing for Enabling Intensive Applications on Energy Harvesting Devices 27
Azalia Mirhoseini, Ebrahim Songhori, Farinaz Koushanfar, Rice University

SIMES: A Simulator for Hybrid Electrical Energy Storage Systems 33
Siyu Yue1, Di Zhu1, Yanzhi Wang1, Younghyun Kim2, Naehyuck Chang3, Massoud Pedram1
1University of Southern California, 2Seoul National University

Power Mapping and Modeling of Multi-core Processors 39
Kapil Dev, Abdullah Nowroz, Sherief Reda, Brown University

Early Detection of Current Hot Spots in Power Gated Designs 45
Dipanjan Sengupta1, Erhan Ergin2, Andreas Veneris1
1University of Toronto, 2Advanced Micro Devices

SESSION 2A SRAM and Emerging Memory

A 40nm 0.32V 3.5MHz 11T Single-Ended Bit-Interleaving Subthreshold SRAM with Data-Aware Write-Assist 51
Yi-Wei Chiu, Yu-Hao Hu, Ming-Hsien Tu, Jun-Kai Zhao, Shyh-Jye Jou, Ching-Te Chuang, National Chiao Tung University

SRAM Cell Optimization for low AVT Transistors 57
Lawrence Clark, Samuel Leshner, George Tien, SuVolta Inc.

Multi-level Magnetic RAM Using Domain Wall Shift for Energy Efficient, High Density Caches 64
Mrigank Sharad, Rangharajan Venkatesan, Anand Raghunathan, Kaushik Roy, Purdue University

SESSION 2B Energy-Aware Task Scheduling and DVFS

A Framework of Concurrent Task Scheduling and Dynamic Voltage and Frequency Scaling in Real-Time Embedded Systems with Energy Harvesting 70
Xue Lin1, Yanzhi Wang1, Siyu Yue1, Naehyuck Chang3, Massoud Pedram1
1University of Southern California, 2Seoul National University
Design and Analysis of 3D IC-Based Low Power Stereo Matching Processors

Seung-Ho Ok¹, Kyeong-ryeol Bae³, Sung Kyu Lim², and Byungin Moon¹∗

¹School of Electronics Engineering, Kyungpook National University, Daegu 702-701, Korea
²School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
*bihmoon@knu.ac.kr

Abstract—This paper presents comprehensive design and analysis results of 3D IC-based low-power stereo matching processors. Our design efforts range from architecture design and verification to RTL-to-GDSII design and sign-off analysis based on GlobalFoundries 130-nm PDK. We conduct comprehensive studies on the area, performance, and power benefits of our 3D IC designs over 2D IC designs. Our 2-tier 3D IC designs attain 43% area, 14% wire length, and 13% power saving over 2D IC designs. We also study a pipeline-based partitioning method shown to be effective at minimizing power consumption and the total number of TSVs while balancing the size of each tier.

Keywords—Stereo matching processor, 3D IC, TSV, low-power design

I. INTRODUCTION

Stereo matching is the process of finding corresponding pixels in a pair of stereo images and extracting depth information by computing the disparity of the corresponding pairs of pixels [1]. The stereo matching processor is widely used in embedded systems such as mobile robots, intelligent vehicles, and unmanned aerial vehicles that demand real-time processing capability with low-power consumption and hardware miniaturization. To meet these requirements, we have used 3D stacking technology based on through-silicon-via (TSVs). Over the last decade, a large variety of stereo matching algorithms have been proposed and categorized in two groups: local and global algorithms [2]. In this paper, we adopted a local algorithm for the implementation of a 3D IC-based stereo matching processor mainly because local algorithms are more straightforward in a pipelined hardware architecture. Thus, they can support real-time processing capabilities more efficiently.

We design our stereo matching processor based on 3D IC technology and compare it with its 2D IC counterpart in terms of wire length and power consumption. For a fair comparison of 2D and 3D ICs, we use the same synthesis output and target clock period during the layout and timing optimization. In this work, we used a macro-level partitioning method that minimizes the total wire length between two tiers of 3D ICs. In addition, we propose a pipeline-based partitioning method that can minimize the total number of TSVs while balancing the size of each tier in a pipelined hardware architecture.

The literature contains several studies related to 3D IC technology. Thorolfsson et al. [3] implemented a 3D IC FFT processor by stacking memory on logic and compared it to a 2D IC. They used the same synthesis output for a fair comparison. Although the aim of this approach is similar to ours, they did not perform a power comparison under the same clock frequency. In addition, they used only one type of partitioning method for the 3D IC design. Neela et al. [4] discussed the 3D IC implementation of a single precision floating-point unit. However, they did not use the same netlist output for the 2D and 3D IC designs. In addition, they only considered the partitioning of logic gates into 3D. Kim et al. [5] demonstrated a many-core processor and memory stacking to show the benefits of TSV-based 3D integration, and Tao et al. [6] demonstrated the feasibility of DRAM stacking by implementing SoC for multimedia applications.

To achieve real-time processing capabilities with low power consumption and hardware miniaturization, we implement a stereo matching processor based on 3D IC technology. Because of its high memory bandwidth and high performance requirements for real-time processing, the stereo matching processor can fully exploit the benefits of 3D stacking technology.

The main contributions of this paper are as follows. (1) To the best of our knowledge, it presents the first 3D IC-based stereo matching processor. (2) It presents a comprehensive study based on practical implementations of a 3D IC-based stereo matching processor that targets power, area, and wire length reduction and finds that our 2-tier 3D IC designs require 43% less area, 14% shorter wire length, and 13% less power than 2D ICs. (3) We present a pipeline-based partitioning method shown to be effective at minimizing power consumption and the total number of TSVs while balancing the size of each tier.

II. STEREO MATCHING PROCESSOR

A. Matching Algorithm

Fig. 1 illustrates a window-based local stereo matching algorithm. As shown in Fig. 1, this algorithm requires a fixed size of window to find corresponding pixels between a pair of stereo images on the same epipolar line [2]. As a result, it also requires a large number...
of memory macros in the hardware implementation to implement the window-based matching algorithm. Fig. 2 shows a block diagram of the stereo matching processor. The census transform is a non-parametric local transform that presents a characteristic feature of the window as a sequence of bit streams [7]. The algorithm performs the census transform on both left and right images to find corresponding pixels in a pair of stereo images and computes the matching cost of the window using the Hamming distance. After window-based matching, the disparity cost propagates to the disparity diffusion module, improving the accuracy of the final dense depth map. Usually, window-based local stereo matching algorithms have difficulty finding accurate corresponding pixels in a featureless area mainly because of the lack of characteristics in the window. To improve the accuracy of the disparity cost in the featureless area, the disparity diffusion module recovers the disparity cost in the featureless area by diffusing the accurate disparity cost of the neighbor non-featureless area. This diffusion method is based on the assumption that adjacent pixels have the same disparity.

B. Hardware Architecture

The matching architecture requires sufficient memory for window-based stereo matching to find corresponding pixels from a pair of stereo images. Thus, the primary goal of the stereo matching architecture is to efficiently buffer both left and right images on the same chip, so that the stereo matching processor can generate a depth map in real time. To fulfill this requirement and deal with the requirement of the wide bandwidth and high-speed data accessing, we used small highly partitioned SRAMs and conducted a window-based operation using a finite number of them. Fig. 3 illustrates how the window with the finite number of SRAMs is generated and propagated horizontally. A pair of stereo images are acquired consecutively from a stereo camera and stored in the SRAMs in rows and processed in columns for window-based matching. As a result, during each cycle, this architecture can concurrently perform multiple reads and a single write operation. Thus, we can handle the requirements of wide bandwidth and high-speed data accessing.

As shown in Fig. 3, the size of memory is primarily determined by the width of the image and the height of the window—the former equals the depth of each SRAM and the latter the number of SRAMs. Therefore, as the width of the image increases, the size of the SRAM increases, and as the size of the window increases, the number of SRAMs also increases. However, a large number of interconnections between the SRAMs and logic cells will cause performance degradation resulting from the high congestion and longer wire length in 2D ICs. Thus, by comparing 2D and 3D ICs, we can show the impact of reduced wire length by vertical stacking on the performance of the stereo matching processor. In this paper, a 8-bit, gray-level 752 x 480 image and a 15 x 15 window is used for the stereo matching and an 11 x 11 window is used for the disparity diffusion. Fig. 4 shows the fully pipelined hardware architecture of the stereo matching processor, and Table I summarizes the features of the stereo matching processor.

III. DESIGN AND ANALYSIS FLOW

A. Design Flow

Fig. 5 shows the overall design flow of 2D and 3D ICs. From the given register-transfer level (RTL) description of the stereo matching processor written in Verilog-HDL, we use a conventional design flow for the 2D IC design. We use Synopsys Design Compiler to generate a top-level synthesized netlist. For a fair comparison between 2D and 3D ICs, we use the same synthesized netlist for 2D and 3D ICs. For the 2D IC layout, we perform floorplanning, placement, clock tree synthesis, routing, and timing optimization using Cadence Encounter.

For the primary step of the partitioning of 3D ICs, we divided the functional modules and memory macros in the top-level netlist, assigned them to the tiers, and determined the number of TSVs that interconnect each tier. Thus, it is in this step that the overall characteristic and performance of 3D ICs are determined. For the two types of 3D IC designs, we partitioned the top-level synthesized netlist in both macro- and pipeline-level styles using group and ungroup commands in Synopsys Design Compiler. Then, we extracted the partitioned netlist for each tier and inserted the TSVs into the netlist. We manually placed the TSVs prior to gate placement and did the layout separately for each tier in the same way as we performed the conventional 2D IC layout.

B. Macro-Level Partitioning

We divided the top-level netlist into logic cells and memory macros, shown in Fig. 6 (a). As the gates are placed vertically over the memory macros, this partitioning method minimizes wire lengths
C. Pipeline-Level Partitioning

The main idea of this partitioning method is to minimize the total number of TSVs and to balance the die sizes of the tiers with minimal effort in a pipelined hardware architecture. In this partitioning method, with the basic concept of pipelining (memory is dedicated to its own pipeline stage, shown in Fig. 4), we simply split the pipeline stages into two groups. In this case, the total number of TSVs is determined by the number of signals between the two groups. However, the balance of the die sizes of the tiers is not guaranteed by simply dividing the pipeline stages into two groups. We balanced them by adjusting the total number of memory macros. In this case, the total number of TSVs increased as the number of adjusted memory macros were increased. Fig. 7 illustrates the two steps of the pipeline-level partitioning method. In this example, we assume that the silicon areas of the stages and memory macros are identical.

D. Timing and Power Analysis Flow

We conducted a static timing analysis (STA) using Synopsys PrimeTime with the layout netlist and a RC parasitic file (.spef) that contains resistance and capacitance values for all the nets. Then, if the timing was met, we performed a power analysis using PrimeTime. Although existing commercial tools can perform STA and power analysis for 2D IC, they cannot do so for 3D ICs. Fig. 8 shows the timing and power analysis flow for 3D ICs. For the 3D STA, we created a top module netlist that combined the netlist of each tier of 3D ICs and a top-level parasitic file that contained the RC parasitic of TSVs. Then, with the layout netlists and RC parasitic files, we performed 3D STA using PrimeTime. After that, if the timing was not met, we extracted the boundary constraints of each tier using PrimeTime and then, using these boundary constraints, we iterated timing optimization during the layout. If the timing was met, we conducted a power analysis using PrimeTime with the layout netlists and the RC parasitic files.

IV. EXPERIMENTAL RESULTS

We implemented our 2D and 3D IC designs using Global-Foundries 130-nm PDK and 44 single-port SRAM macros generated...
A. Partitioning Style Comparisons

For the 3D IC designs, we used both the conventional technology setting because of a recent successful 3D IC development published in [5]. For a fair comparison between 2D and 3D ICs, we use the same synthesis output and target clock period during the layout and timing optimization for the entire design. Tables II and III summarize the synthesis results and memory macros, respectively. We bonded Tiers 1 and 2 in a face-to-back style and connected them using a 2.2-μm via-first TSVs for 3D integration, shown in Fig. 9. In addition, since the capacitance and resistance of TSVs are not negligible in the timing and power analysis, we used 10 fF for the TSV capacitance and 50 Ω for the resistance of TSV during the timing and power analysis. The clock tree synthesis for 3D IC design is difficult because no commercial EDA tools can fully handle clock trees for 3D ICs. Thus, we treated each tier as if it had its own clock tree network and then performed clock tree synthesis separately. Then we directly connected the clock source of Tier-1 to Tier-2 through a TSV.

with an ARM memory compiler. We chose this commercial technology setting because of a recent successful 3D IC development published in [5]. For a fair comparison between 2D and 3D ICs, we use the same synthesis output and target clock period during the layout and timing optimization for the entire design. Tables II and III summarize the synthesis results and memory macros, respectively. We bonded Tiers 1 and 2 in a face-to-back style and connected them using a 2.2-μm via-first TSVs for 3D integration, shown in Fig. 9. In addition, since the capacitance and resistance of TSVs are not negligible in the timing and power analysis, we used 10 fF for the TSV capacitance and 50 Ω for the resistance of TSV during the timing and power analysis. The clock tree synthesis for 3D IC design is difficult because no commercial EDA tools can fully handle clock trees for 3D ICs. Thus, we treated each tier as if it had its own clock tree network and then performed clock tree synthesis separately. Then we directly connected the clock source of Tier-1 to Tier-2 through a TSV.

A. Partitioning Style Comparisons

For the 3D IC designs, we used both the conventional technology setting because of a recent successful 3D IC development published in [5]. For a fair comparison between 2D and 3D ICs, we use the same synthesis output and target clock period during the layout and timing optimization for the entire design. Tables II and III summarize the synthesis results and memory macros, respectively. We bonded Tiers 1 and 2 in a face-to-back style and connected them using a 2.2-μm via-first TSVs for 3D integration, shown in Fig. 9. In addition, since the capacitance and resistance of TSVs are not negligible in the timing and power analysis, we used 10 fF for the TSV capacitance and 50 Ω for the resistance of TSV during the timing and power analysis. The clock tree synthesis for 3D IC design is difficult because no commercial EDA tools can fully handle clock trees for 3D ICs. Thus, we treated each tier as if it had its own clock tree network and then performed clock tree synthesis separately. Then we directly connected the clock source of Tier-1 to Tier-2 through a TSV.

B. Overall Layout Comparisons

Figs. 10 and 12 show the design quality comparisons and the layout snapshots of 2D and 3D ICs, respectively. Table VI summarizes the results of the comparison of the layout. First of all, we observed that the chip footprint of the 3D ICs was 43% smaller than that of the 2D IC. In addition, the total wire lengths of the 3D-MP and the 3D-PP were 14% and 4%, respectively, shorter than those of the 2D IC by taking advantage of vertical stacking and the smaller footprint area. We also observed that the total number of buffers of the 3D ICs was nearly 20% lower than that of the 2D IC mainly because of shortened wire lengths. As a result, 3D ICs consumed less power than the 2D IC. In fact, the 3D-MPs and 3D-PPs consumed 13% and 7% less power, respectively, than the 2D IC.

However, in the case of the 3D-PP, although the total wire length of the clock tree was 7% shorter than that of the 2D IC, their total number of clock tree buffers was 4% higher than that of the 2D IC. One explanation for this finding is that we performed clock tree synthesis separately and then directly connected the clock source of Tier-2 to that of Tier-1 through a TSV. In this case, existing commercial EDA tools perform the clock tree synthesis without any awareness of the other clock tree. Thus, the clock tree of the 3D IC could not be optimized well. However, the 3D-PP does not have a
large clock tree network on Tier-2, so it suffers less from the clock tree optimization problem.

When the 3D-MP is compared with the 3D-PP, the 3D-PP uses a smaller number of TSVs, but the 3D-MP outperforms the 3D-PP, particularly in terms of total wire length and total number of clock tree buffers. This finding could result from several factors: The location of the TSVs of the 3D-PP may not be an optimal location, and the 3D-PP may require more buffers than the 3D-MP because its clock tree network is less optimized. From these observations, we learned that an optimal location of TSVs and the 3D clock tree synthesis play important roles in 3D IC design, which fully exploits the benefits of vertical stacking.

C. Detailed Power Analysis

Table VII and Fig. 11 show the detailed power comparisons between 2D and 3D ICs. We observed that memory macros consumed over 35% of total power in all of the designs because of the memory-intensive nature of the stereo matching processor. In addition, even though the total wire length and the total number of clock tree buffers occupy around 4% of the total wire length and 5% of total buffers, the clock network consumed over 30% of the power because of the high switching activity of the clock tree network and the larger number of registers for pipelining. As shown in Fig. 11, most of the power savings are achieved in the combinational power, indicating that the reduced number of buffers in the interconnect plays an important role in reducing the power consumption of 3D IC designs.

D. Discussion

This study shows that we can achieve significant power reduction with our 3D IC-based stereo matching processors. Our studies indicate that the major sources of power reduction are a smaller number of buffers and shortened wires that stem from vertical stacking and a reduced footprint area. We also learned that the proposed pipeline-level partitioning method minimizes the total number of TSVs while balancing the footprint area of each tier. However, we also observed that the reduction in the total number of signal TSVs does not always lead to an optimal design with regard to total wire length and power reduction. To fully exploit the benefits of vertical stacking, designers must determine optimal locations for TSVs in physical layouts.

V. Conclusion

We presented comprehensive analysis results of 3D IC-based low-power stereo matching processors. We used two types of partitioning methods to fully exploit the benefits of the vertical stacking technology, namely, macro- and pipeline-level partitioning. We observed that our 3D IC-based stereo matching processors enabled low power consumption mainly due to a reduction in buffer usage and shortened wire lengths resulting from a reduced footprint area. We achieved a total power reduction of 13% and 7% with our macro- and pipeline-level partitioning methods, respectively. Our 3D IC study was only done in 130-nm technology. However, more advanced technology nodes provide more wire layers for routing. Thus, there are less routing congestion problems in the advanced technology nodes. However, overall performance of 3D IC designs is more influenced by the constraints of the design and the proportion of the memory power consumption than the total number of routing layers. Our future work includes the comparison of benefits of 3D stacking between different types of technology nodes.

ACKNOWLEDGMENT

This investigation was financially supported by Semiconductor Industry Collaborative Project between Kyungpook National University and Samsung Electronics Co. Ltd. This research was supported by the MSIP (Ministry of Science, ICT & Future Planning), Korea, under the C-ITRC (Convergence Information Technology Research Center) support program (NIPA-2013-H0401-13-1005) supervised by the NIPA (National IT Industry Promotion Agency).
TABLE VI. OVERALL LAYOUT COMPARISONS BETWEEN 3D-MP (MACRO-LEVEL PARTITIONING), 3D-PP (PIPELINE-LEVEL PARTITIONING), AND 2D.

<table>
<thead>
<tr>
<th>Design Type</th>
<th>Power Group</th>
<th>Internal Power (mW)</th>
<th>Switching Power (mW)</th>
<th>Leakage Power (mW)</th>
<th>Total Power (mW)</th>
<th>Percentage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3D IC (3D-MP)</td>
<td>Memory</td>
<td>353.80</td>
<td>1.46</td>
<td>0.08</td>
<td>355.34</td>
<td>40.79</td>
</tr>
<tr>
<td></td>
<td>Clock network</td>
<td>209.70</td>
<td>68.20</td>
<td>0.00</td>
<td>277.90</td>
<td>31.90</td>
</tr>
<tr>
<td></td>
<td>Register</td>
<td>51.80</td>
<td>12.40</td>
<td>0.00</td>
<td>64.40</td>
<td>7.37</td>
</tr>
<tr>
<td></td>
<td>Combinational</td>
<td>89.80</td>
<td>103.80</td>
<td>0.00</td>
<td>193.60</td>
<td>22.23</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>685.10</td>
<td>185.86</td>
<td>0.08</td>
<td>871.04</td>
<td>100.00</td>
</tr>
<tr>
<td>3D IC (3D-PP)</td>
<td>Memory</td>
<td>353.70</td>
<td>2.02</td>
<td>0.08</td>
<td>355.80</td>
<td>38.20</td>
</tr>
<tr>
<td></td>
<td>Clock network</td>
<td>219.50</td>
<td>68.80</td>
<td>0.00</td>
<td>288.30</td>
<td>30.96</td>
</tr>
<tr>
<td></td>
<td>Register</td>
<td>36.40</td>
<td>13.70</td>
<td>0.00</td>
<td>50.10</td>
<td>5.38</td>
</tr>
<tr>
<td></td>
<td>Combinational</td>
<td>113.80</td>
<td>123.30</td>
<td>0.00</td>
<td>237.10</td>
<td>25.46</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>723.40</td>
<td>207.82</td>
<td>0.08</td>
<td>931.30</td>
<td>100.00</td>
</tr>
<tr>
<td>2D IC</td>
<td>Memory</td>
<td>353.70</td>
<td>1.33</td>
<td>0.08</td>
<td>355.11</td>
<td>35.29</td>
</tr>
<tr>
<td></td>
<td>Clock network</td>
<td>246.10</td>
<td>71.00</td>
<td>0.00</td>
<td>317.10</td>
<td>31.51</td>
</tr>
<tr>
<td></td>
<td>Register</td>
<td>41.10</td>
<td>14.70</td>
<td>0.00</td>
<td>55.70</td>
<td>5.54</td>
</tr>
<tr>
<td></td>
<td>Combinational</td>
<td>135.80</td>
<td>142.60</td>
<td>0.00</td>
<td>278.40</td>
<td>27.67</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>776.60</td>
<td>229.63</td>
<td>0.08</td>
<td>1006.31</td>
<td>100.00</td>
</tr>
</tbody>
</table>

Fig. 12. Layout snapshots: (a) 2D IC, (b) 3D-MP (macro-level partitioning), (c) 3D-PP (pipeline-level partitioning).

REFERENCES