Overview of 3D Graphics Processing

연세대학교 이용석 교수 연구실 박사과정 김현필
E-mail: yonglee@yonsei.ac.kr
Homepage: http://mpu.yonsei.ac.kr
전화: 02-2123-2872

Reference

[1] 이병래 외, "컴퓨터 그래픽스", 홍릉과학 출판사
[3] 이병래 외, "3D 그래픽 칩 관련 기술 및 산업 동향, 기업소개" ITSoC Magazine
[5] The OpenGL Shading Language
[9] 박재형 외, "모바일 3D 기술", ETRI 표준 기술동향

Agenda

• Introduction
• Graphic Processing
• GPU Evolving
• The Newest GPU Technology
• API for 3D Graphics Accelerating
• GPU for Mobile Device
INTRODUCTION

1. GPU (Graphic Processing Unit)
2. Motivation
 - Computational Power
 - Flexible and Precise
 - The Potential of GPGPU
3. Problem

Motivation: Computational Power

- GPUs are fast.
 - 3 GHz Pentium 4: 6 GFLOPS, 5.96 GB/sec peak
 - GeForceFX 5900: 20 GFLOPs, 25.3 GB/sec peak
- GPUs are getting faster, faster.
 - CPUs: annual growth $\times 1.5 \rightarrow$ decade growth $\times 60$
 - GPUs: annual growth $\rightarrow 2.0 \rightarrow$ decade growth $\rightarrow 1000$
- Why are GPUs getting faster?
 - Arithmetic intensity
 - Economics

Motivation: Flexibility and Precision

- Modern GPUs are deeply programmable
 - Programmable pixel, vertex, video engines
 - Solidifying high-level language support
- Modern GPUs support high precision
 - 32 bit floating point throughout the pipeline
 - High enough for many (not all) applications

Motivation: Potential of GPGPU

- The power and flexibility of GPUs makes them an attractive platform for general-purpose computation.
- Example applications (from GPGPU.org)
 - Advanced Rendering: Global Illumination, Image Image-based Modeling
 - Computational Geometry
 - Computer Vision
 - Image and Volume Processing
 - Scientific Computing: physically physically-based simulation, linear system solution, PDEs
 - Database queries
 - Monte Carlo Methods

Problem: Difficult To Use

- GPUs designed for and driven by video games
 - Programming model is unusual
 - Programming environment is tightly constrained
- Underlying architectures are:
 - Inherently parallel
 - Rapidly evolving (even in basic feature set!)
 - Largely secret
- Can’t simply "port" code written for the CPU!

What's GPU?

- The GPU (Graphic Processing Unit) on commodity video cards has evolved into an extremely flexible and powerful processor
 - Programmability
 - Precision
 - Power

(a) Animation Movie
(b) 3D Game
GPU Application Market\[3][4]\n
<table>
<thead>
<tr>
<th></th>
<th>2005</th>
<th>2006</th>
<th>2007</th>
<th>2008</th>
<th>CAGR(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desktop PC Discrete</td>
<td>82.1</td>
<td>82.3</td>
<td>81.6</td>
<td>80.4</td>
<td>-0.7</td>
</tr>
<tr>
<td>Notebook PC Discrete</td>
<td>21.2</td>
<td>21.3</td>
<td>25.6</td>
<td>28.6</td>
<td>10.5</td>
</tr>
<tr>
<td>Integrated Chips</td>
<td>162.2</td>
<td>183.5</td>
<td>195.2</td>
<td>210.2</td>
<td>9.2</td>
</tr>
<tr>
<td>Handheld</td>
<td>817.7</td>
<td>922.9</td>
<td>994.4</td>
<td>1071.9</td>
<td>9.4</td>
</tr>
<tr>
<td>Digital TV</td>
<td>73.7</td>
<td>98.3</td>
<td>114.9</td>
<td>134.5</td>
<td>22.2</td>
</tr>
<tr>
<td>Game Consoles</td>
<td>17</td>
<td>26.5</td>
<td>39.7</td>
<td>42.3</td>
<td>35.5</td>
</tr>
</tbody>
</table>

3D GRAPHICS PROCESSING
Graphic hardware pipeline
Vertex transformation & Lighting
Primitive assembly & Rasterization
Fragment texturing & Coloring
Raster operations

Graphic Hardware Pipeline

Vertex Translation

Primitive Assembly & Rasterization

Primitive Assembly
Fragment Texturing & Coloring

- **Application Stage**
 - User Input & Collision Detection
 - Vertex Connectivity

- **Geometry Stage**
 - Texture Transform & Lighting
 - Transformed Vertices

- **Rasterization Stage**
 - Fragment Texturing & Coloring
 - Colored Fragments

Raster Operations (1)

- **Application Stage**
 - User Input & Collision Detection
 - Vertex Connectivity

- **Geometry Stage**
 - Texture Transform & Lighting
 - Transformed Vertices

- **Rasterization Stage**
 - Fragment Texturing & Coloring
 - Colored Fragments

Raster Operations (2)

- **Data Flow of Graphic Pipeline**
 - Vertex Transformation & Lighting
 - Rasterization
 - Texturing & Coloring

1st Generation GPU

- **GPU EVOLVING**
 - 3D Graphics Process
 - 1st Generation
 - 2nd Generation
 - 3rd Generation
2nd Generation GPU

- CPU
 - Application Stage
 - Halstages
 - System Memory

- GPU
 - Geometry Stage
 - Rasterization Stage
 - Texture Unit
 - Register Combiner
 - Rasterizer
 - Raster Operation Unit
 - Video Memory

3rd Generation GPU

- CPU
 - Application Stage
 - Transform & Lighting
 - Textures
 - System Memory

- GPU
 - Geometry Stage
 - Rasterization Stage
 - Texture Unit
 - Pixel Shaders
 - Rasterizer
 - Raster Operation Unit
 - Video Memory

Programmable Vertex Shader

1. Load vertex attribute into temporary registers
2. Read vertex attribute
3. Apply transformation
4. Write temporary registers

Programmable Pixel Shader

1. Load pixel attribute into temporary registers
2. Read pixel attribute
3. Apply transformation
4. Write temporary registers

THE NEWEST GPU TECHNOLOGY

1. Unified Shader
2. GPGPU

Unified Shader

- Unified Shaders
- Frame Buffer
- Texture Unit
- Vertex Fetcher
- Graphic Memory
GPGPU (General Purpose GPU)

- Computational resource
 - Programmable processors
 - Vertex, primitive and fragment pipelines allow programmer to perform kernel on streams of data
 - Rasterizer
 - Creates fragments and interpolates per-vertex constants such as texture coordinates and color
 - Texture Unit: read only memory interface
 - Frame buffer: write only memory interface
- Texture as stream
- Kernel
- Flow control

API FOR 3D GRAPHICS ACCELERATING

1. OpenGL
2. DirectX Direct 3D

OpenGL

- API for 3D graphic application
- Open standard
- Verified on variable OS
 - Windows 95, NT, X Windows, OS/2
- Mainly used to PC or workstation
- Ver. 2.1 has vertex and fragment shader.
- OpenGL|ES is API for embedded system.

DirectX Direct 3D

- API for Windows’s multimedia application (2D, 3D, video, audio)
- Like as OpenGL
- Shader model
 - Vertex, pixel, geometry shader
- Mobile purpose
 - Direct 3D mobile
 - Not support vertex and pixel shader

GPU FOR MOBILE DEVICE

1. Khronos Group
2. JCP
Khronos Group

- Standardization of Audio, Video, 2D, 3D Graphic API and Development Environment for Embedded or Mobile
 - OpenGL|ES (OpenGL for Embedded Systems)
 - OpenML (Open Media Library)
 - OpenVG (Open Vector Graphics)
 - OpenMAX (Open Media Acceleration Primitives)

JCP (Java Community Process)

- Java Platform Standardization of Java Spec., Reference Implementation, Compatibility Tool Development
 - JSR184 (Mobile 3D Graphics API for J2ME)
 - JSR239 (Java Bindings for OpenGL|ES)

THANK YOU !!!